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We review recent work on realistic models that break supersymmetry dynamically and give rise
to composite quarks and leptons, all in a single sector. These models have a completely natural
suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained
by the dimensionality of composite states. The generic signatures are unification of scalar masses
with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and
third-generation sfermion masses.

I. INTRODUCTION

One of the most exciting results of the recent progress in understanding strongly coupled supersymmetric gauge

theories [1] is that it allows the exploration of new possibilities for the realization of supersymmetry (SUSY) in nature.

The most important example is the use of dynamical SUSY breaking to explain the origin of the SUSY breaking scale.

In recent years, large classes of SUSY gauge theories have been discovered that exhibit dynamical SUSY breaking

through a variety of different mechanisms [2,3], and realistic models have been built using these theories as building

blocks in both (super)gravity-mediated and gauge-mediated frameworks.

In these conventional approaches to SUSY model building, SUSY breaking arises in a separate sector consisting

of fields that are neutral under the standard model (SM) gauge group, and SUSY breaking is communicated to the

observable fields by messenger (gauge or gravitational) interactions. It is clearly important to know whether such a

‘modular’ structure is required in order for SUSY to be the solution of the hierarchy problem, or if simpler models

without disjoint sectors are possible. In [4,5], realistic models were constructed that do not require a separate SUSY

breaking sector. In these models, SUSY is broken dynamically by strongly coupled fields that are charged under

the SM gauge group, giving rise to composites with the quantum numbers of quarks and leptons. The composite

sfermions have SUSY breaking masses induced directly by the strong dynamics, while the masses of the composite

fermions are protected by unbroken chiral symmetries. The masses of the elementary gauginos and sfermions arise

from gauge mediation (via the composite scalars); they are therefore smaller than the composite scalar masses, which

are necessarily in the range of 1–10 TeV.

If we make the simplest assumption that the first two generations are composite while the third is elementary, we

automatically gain a partial understanding of the observed hierarchy of fermion masses. The reason is that all Yukawa

couplings involving composite states must arise from higher-dimension operators in the fundamental theory, and are

thus suppressed, while the top Yukawa coupling can be order one. A highly non-trivial feature of this scenario is that

it does not lead to excessive flavor-changing neutral currents (FCNC’s) from squark non-degeneracy even if the flavor

sector has no flavor symmetry. This is because the strong composite dynamics is flavor-blind, and so the composite

scalar masses are degenerate to high accuracy, with small corrections due to perturbative flavor-breaking couplings.
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Such scenarios for single sector SUSY breaking have several interesting generic phenomenological implications.

First, as mentioned above, gaugino and stop masses will be much smaller than the masses of composite squarks

and sleptons. Second, the composite scalar masses unify at the compositeness scale. Third, if we assume that the

Yukawa interactions are generated by new physics at a flavor scale above the compositeness scale without special

flavor symmetries, predictions for flavor-changing processes such as µ → eγ are plausibly within experimental reach.

We have constructed large classes of supersymmetric gauge theories [5] with the non-perturbative dynamics required

for this kind of model-building. At low energies the models either confine (like the models of [4]), have conformal

fixed points, or are magnetically free. All of the models discussed here have only local SUSY breaking minima. Also,

they are not calculable, and require dynamical assumptions to be phenomenologically viable. However, in many of

the models the existence of a local SUSY breaking minimum with composite fermions can be established without

dynamical assumptions. This shows that the combination of compositeness and SUSY breaking is not exotic, and

suggests that further exploration of the connection between these phenomena is worthwhile.

II. MASS SCALES AND PHENOMENOLOGY

In this Section, we describe the most important qualitative features of single sector models. We will then focus

on three example models: a ‘meson’ model where the first two generations correspond to dimension 2 operators; a

‘dimensional hierarchy’ model in which the first generation corresponds to dimension 3, the second to dimension 2,

and the third generation is elementary (dimension 1); and a speculative model where the effective composite operator

dimension is 3
2 . We want to emphasize the fact that the phenomenology is very rich, and is largely independent of

the details of specific models. More thorough discussions can be found in Refs. [4,5].

A. SUSY Breaking and Compositeness

We first explain the mechanism that gives rise to SUSY breaking and compositeness. The known models have a

strong gauge group of the form Gcomp × Glift, where both groups are asymptotically free and Λcomp ≫ Λlift. The

scale Λcomp is the compositeness scale: composite quarks and leptons become strongly interacting at the scale Λcomp.

Direct bounds on the compositeness scale imply that Λcomp >∼ 2 TeV. The role of the gauge group Glift is to generate

a dynamical superpotential that lifts the vacuum degeneracy and gives rise to a local SUSY breaking minimum.

The models contain the following fields

Glift Gcomp Gglobal

Q 1

L 1

Ū 1

P 1 R 1

where the representation R may be highly reducible (implying additional global symmetries). In addition, the model

has a tree-level superpotential

W = λQLŪ. (1)

Gglobal must be large enough that it contains SU(3)c × SU(2)L × U(1)Y as a subgroup. There are additional re-

quirements on the model in order for this model to have a local SUSY breaking minimum. We choose Gglobal such

that classically there is a flat direction with Ū 6= 0 where Q and L are massive and Gcomp is completely broken.

Nonperturbative Glift dynamics (gaugino condensation) lift this flat direction via a dynamical superpotential of the

form

Wdyn ∼ Λ3−r
lift Ū r. (2)
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Whether this superpotential forces Ū to large or small values depends on the value of r, but it also depends on the

effective Kähler potential for Ū . For Ū ≫ Λcomp, Gcomp is broken at weak coupling and the Kähler potential is smooth

in Ū , so the potential slopes toward the origin for r > 1. For Ū ≪ Λcomp the Gcomp dynamics changes the Kähler

potential for Ū . For example, if the Gcomp dynamics is confining, the Kähler potential will be smooth in terms of a

‘composite’ field B = (Ūn). The superpotential can then be written

Wdyn ∼ Br/n, (3)

which corresponds to a potential that slopes away from the origin if r/n < 1. Therefore, for 1 < r < n there is no

SUSY minimum for any value of Ū , and there is a SUSY breaking minimum near the border between the region of

validity of the confined and Higgs descriptions. In general, there are other moduli corresponding to excitations of P

that must be stabilized; in some models this requires an additional renormalizable term in the superpotential, while

in other models it requires a dynamical assumption. The minimum occurs for

〈Ū〉 ∼
√

NΛcomp

4π
, (4)

where N is the number of ‘colors’ of Gcomp.

This mechanism also occurs in cases where the Gcomp dynamics gives rise to a conformal fixed point (in the limit

where we turn off Glift), provided that the Ū anomalous dimensions are sufficiently large. As long as Ū ≪ Λcomp the

Gcomp dynamics is controlled by the infrared fixed point. Recall that we are assuming that Glift is weak at the scale

Λcomp, so the non-perturbative superpotential can be viewed as a perturbation. The 1PI potential for Ū is therefore

V1PI ≃ (K−1
1PI)Ū†Ū

∣

∣

∣

∣

∂Wdyn

∂Ū

∣

∣

∣

∣

2

, (5)

where K1PI is the 1PI Kähler metric evaluated at the conformal fixed point. The scaling dimension of the Kähler

metric (K1PI)Ū†Ū is 2 − 2dŪ , where dŪ is the scaling dimension of Ū . Therefore,

(K−1
1PI)Ū†Ū ∼ Ū2(dŪ−1)/dŪ . (6)

This forces the potential to slope away from the origin for

1 − dŪ

dŪ

> r − 1. (7)

One might worry that this argument relies on a ‘Higgs’ description in terms of the elementary field Ū in a regime

where the theory is strongly coupled. In many cases there is an alternate description in terms of a weakly-coupled dual

theory. For example, if Gcomp = SU(N) with F ‘flavors’, the theory has an infrared fixed point for 3
2N < F < 3N [6].

There is a dual description in terms of a theory with gauge group SU(F − N) in which the ‘baryon’ operator ŪN in

the original theory is mapped to an operator ūF−N in the dual. For F near 3
2N the dual description is weakly coupled,

and the considerations of the previous paragraph can be made rigorous. One finds that the behavior of the Kähler

potential agrees precisely with Eq. (5). This equivalence between the ‘Higgs’ and ‘dual’ descriptions can be viewed

as a generalization of the usual ‘complementarity’ [7] for theories with scalars in the fundamental representation, and

gives us additional confidence in the considerations above.

In these models, SUSY is broken by

〈FŪ 〉 ∼
〈

∂Wdyn

∂Ū

〉

∼
Λ2

comp

4π
(λ
√

N)r−1

(

Λlift

Λcomp

)3−r

. (8)

Since r < 3 (otherwise the dynamical superpotential Eq. (2) does not have a good limit Λlift → 0 when Glift is

asymptotically free), we have 〈FŪ 〉 ≪ Λ2
comp. The scalar components of Ū get a SUSY-breaking mass of order

m2
Ū ∼

〈

∂2

∂Ū2

∣

∣

∣

∣

∂Wdyn

∂Ū

∣

∣

∣

∣

2
〉

∼
F 2

Ū

〈Ū〉2 ≡ m2
comp. (9)
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The ‘preon’ fields P charged under Gcomp get SUSY-breaking masses of order mcomp from effects such as

Γ1PI ∼
∫

d2θd2θ̄
16π2

Λ2
comp

Ū †ŪP †P ∼ m2
compP

†P. (10)

The scalar mass squared terms of the preons are not calculable, and therefore can have either sign. To build realistic

models, we will have to assume that some of these mass-squared terms are positive. In the models we discuss, some

of the fermion components of P can remain massless (in the absence of a Higgs VEV) because of unbroken chiral

symmetries, and these will be identified with quarks and leptons.

With this discussion of the mass scales, we have enough information to analyze the main features of the phenomenol-

ogy of these models. Masses for SM gauginos and elementary charged scalars are generated by gauge mediation from

the composite scalars, so that

mλ,SM ∼ N
g2
SM

16π2
mcomp, m2

φ,elem ∼ N

(

g2
SM

16π2
mcomp

)2

. (11)

Note that the multiplicity factor N enhances gaugino masses compared to elementary scalar masses.

In the models we have constructed, some or all of the quarks and leptons from the first two generations are

composite, while the third generation is elementary. The reason for this is that in our models the Yukawa couplings

for composite quarks and leptons arise from higher-dimension operators in the fundamental theory, and are naturally

small compared to one. It is difficult to accommodate the order-one top Yukawa coupling in this framework unless

the top quark is elementary. Another reason for the third generation to be elementary is that stop masses of order

mcomp ∼ 1–10 TeV (needed to get sufficiently large gaugino masses) necessitate a large amount of fine-tuning in

electroweak symmetry breaking. In order to obtain a third generation scalar mass m3 >∼ 100 GeV we therefore require

mcomp >∼
10TeV√

N
. (12)

We see that single sector models naturally have a superpartner spectrum similar to the ‘more minimal’ framework

[8]. In models of this kind, there is a dangerous negative contribution to the third-generation squark masses from the

heavy scalars [9], given by

µ
dm2

3

dµ
=

8g2

16π2
C2

[

3g2

16π2
m2

comp − m2
λ

]

, (13)

where we have assumed that a single gauge group dominates and specialized to the case of two full composite

generations. One way to avoid this problem is to have the compositeness scale close to 10 TeV, so that the negative

contribution above does not dominate. If the compositeness scale is high, one can avoid problems if the gaugino

contribution is important. From Eq. (13), we see that mλ >∼ mcomp/10 is sufficient. This requires N >∼ 10.

Most of the models we have constructed have of order N ‘preonic’ generations above the compositeness scale, and

for N >∼ 10 the SM gauge groups are far from asymptotically free. This is compatible with perturbative unification if

the compositeness scale is above (or near) the GUT scale 1016 GeV.

B. ‘Meson’ Models

We will now discuss ‘meson’ models where all quarks and leptons of the first two generations correspond to

dimension-2 operators PŪ in the fundamental theory. This means that small Yukawa couplings involving the first

two generations can be generated by:

WYuk =
1

M2
H(PŪ)(PŪ ) +

1

M
HΦ3(PŪ). (14)

where M is the scale of new physics where flavor symmetries are broken, H is a Higgs field, and Φ3 is an elementary

third-generation quark or lepton field. This gives a Yukawa matrix of the form
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y ∼
(

ǫ2 ǫ2 ǫ
ǫ2 ǫ2 ǫ
ǫ ǫ 1

)

, ǫ ∼ 〈Ū〉
M

, (15)

Additional structure is clearly needed to construct fully realistic Yukawa matrices, but for ǫ in the range 10−1–10−2

this is a good starting point.

We will make the conservative assumption that the new physics at the scale M does not have any approximate

flavor symmetries that can suppress FCNC’s. In particular, this means that the Yukawa couplings λ in Eq. (1)

do not conserve flavor. It is highly non-trivial that the strong dynamics in this theory nevertheless gives rise to

an approximate flavor symmetry at low energies that enforces the near degeneracy of the composite scalars. The

underlying reason for this is the fact that all of the composites (PŪ) are part of a single multiplet from the point of

view of the strong interactions.

Let us first consider the λ-dependent effects. The superpotential Eq. (2) depends on λ only through det(λ), which

is flavor independent. There is nontrivial λ dependence in the effective Kähler potential, but it is proportional to

λ2/(16π2) <∼ 10−2. We now consider the effects of general higher-dimension operators suppressed by the flavor scale

M . The largest effects come from terms in the effective Lagrangian of the form

∆Leff ∼
∫

d2θd2θ̄
1

M2
(PŪ)†(PŪ), (16)

which give rise to mixing between the composite generations. This translates to mixing masses between the composite

generations of order

∆m2
jk

m2
comp

∼
( 〈Ū〉

M

)2

∼ yjk. (17)

The most stringent bounds on squark mixing come from K0–K̄0 mixing, and can be summarized as

Re

(

∆m2
d̃s̃

m2
comp

)

<∼ 10−1 mcomp

10TeV
, Im

(

∆m2
d̃s̃

m2
comp

)

<∼ 10−2 mcomp

10TeV
. (18)

Since yds ∼ 3 × 10−4, this is easily satisfied even if we assume that CP violation in the flavor sector is maximal.

A striking signature of these models is that all scalars of the first two generations unify at the scale Λcomp (which

need not be close to the GUT scale). The unification holds up to effects suppressed by a loop factor, and is therefore

expected to hold to 1%. This striking pattern is difficult to obtain naturally in other SUSY breaking models.

An explicit model of this type was constructed in [5] by identifying Glift × Gcomp × Gglobal with SU(13)lift ×
SU(15)comp × SU(15)gl and taking the preon field P to consist of 3 ’s and one of SU(15)comp, where one of

SU(15)gl decomposes into one SM generation.

C. ‘Dimensional Hierarchy’ Models

We next discuss ‘dimensional hierarchy’ models that explain the observed fermion mass hierarchy in terms of a

hierarchy of dimensions of operators. Specifically, we assume that the first-generation quarks and leptons correspond to

dimension 3 operators of the form (PŪŪ), second-generation quarks and leptons correspond to dimension 2 operators

(PŪ), and third generation quarks and leptons are elementary (dimension 1). In this case, Yukawa couplings involving

the composite states arise from terms in the tree-level superpotential of the form

WYuk = 1
M4 H(PŪŪ)(PŪŪ) + 1

M3 H(PŪŪ)(PŪ) + 1
M2 HΦ3(PŪŪ) (19)

+ 1
M2 H(PŪ)(PŪ) + 1

M HΦ3(PŪ), (20)

giving rise to a Yukawa matrix of the form
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y ∼
(

ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ
ǫ2 ǫ 1

)

, ǫ ∼ 〈Ū〉
M

. (21)

This structure reproduces the main features of the observed fermion mass hierarchy for ǫ ∼ 10−1. A striking signature

of these models is that the first- and second-generation scalars unify in two multiplets at the scale Λcomp.

In this scenario there is no approximate flavor symmetry at low energies because the first- and second-generation

fields belong to different strong-interaction multiplets. We therefore have

∆m2
d̃s̃

m2
comp

∼ sin θc ∼ 10−1. (22)

Comparing with the bounds from the K0–K̄0 system Eq. (18), we see that mcomp ∼ 10 TeV is sufficient to suppress

FCNC’s but we require either a 10% fine-tuning or a 10% suppression of CP -violating effects in the squark masses.

An explicit model of this type was constructed in [5] by identifying Glift × Gcomp × Gglobal with SU(2)lift ×
SU(16)comp × SU(16) and taking the preon field P to consist of 2 ’s and one antisymmetric tensor of SU(16)comp.

D. A Simple but Speculative Model

We now present a simple model whose dynamics we do not know how to analyze completely. If we make a reasonable

dynamical assumption, this model gives rise to compositeness and SUSY breaking by the mechanism discussed in

above. The particle content is:

SU(k) SO(10) SU(10) SU(2)
Q 1 1

L 1 1

Ū 1 1

P 1 16 1

.

For 〈Ū〉 ≫ Λ10, SO(10) × SU(10) is broken to the diagonal SO(10) subgroup and SU(k) gaugino condensation

gives rise to a dynamical superpotential

Wdyn ∼ Ū10/k. (23)

The potential therefore slopes toward Ū → 0 for k < 10.

The dynamics for small values of 〈Ū〉 involves the strong-coupling behavior of the SO(10) gauge theory with

spinors, which is presently not well understood. The SO(10) gauge theory has a dual description in terms of an

SU(2)×SU(7+k) gauge theory [10]; this dual is not weakly coupled in the infrared, so we cannot use it to determine

the behavior of the Kähler potential for Ū . Based on analogies with similar duals, one expects this theory to have an

infrared fixed point [10,11].

If we assume that the anomalous dimension of Ū is sufficiently large (> 0.1), then there is a local SUSY-breaking

minimum. The fermions from the 16’s are exactly massless far from the origin, and because there can be no phase

transitions as a function of moduli they are massless at the local minimum as well. This model therefore contains

two composite fermionic 16’s which can be identified with two SM generations (with right-handed neutrinos) if we

embed the SM into SU(10) via the standard SO(10) GUT embedding FCNC’s are suppressed by the approximate

global SU(2) symmetry of the strong dynamics. Above the compositeness scale, this model has 3 + k/2 additional

‘preonic’ generations.

Yukawa couplings for the composite generations can be induced if we include a Higgs field, H embedded in the

of the global SU(10) by operators of the form

WYuk =
1

M
PPHŪ (24)
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This gives Yukawa couplings y ∼ 〈Ū〉/M for the composite quarks and leptons. (Compared with our previous

expressions, this corresponds to the composite operators being dimension 3
2 .) Thus the flavor scale M can be pushed

up even higher in this model, and FCNC’s are even more suppressed than in our ‘meson’ models.

III. CONCLUSIONS

We have seen that there is a wide class of realistic models which dynamically break SUSY and produce composite

quarks and leptons, all in a single (strongly-coupled) sector. These models are remarkably simple; many of the

fermion mass hierarchies follow naturally, and approximate flavor symmetries of the strong interactions can guarantee

the natural suppression of flavor-changing neutral currents (including ǫK) with no fine-tuning.

All of these models have a very distinctive phenomenology: the composite sfermions of the first two generation

are heavier than the gauginos, Higgsinos, and third-generation sfermions; and the composite sfermions unify at the

compositeness scale.

A (perhaps) surprising result of our recent work [5] is the wide variety of dynamics that can give rise to simulta-

neous compositeness and SUSY breaking. We have found models whose low-energy dynamics is governed by either

confinement, a non-trivial infrared fixed point, or a free-magnetic phase. We believe that it is quite likely that further

progress in understanding the dynamics of SUSY gauge theories will lead to the discovery of many additional models

that display the dynamics illustrated here.
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